Еремеев Виктор Анатольевич

 

Любимый польский город Гданьск

Доктор физико-математических наук, доцент, профессор кафедры математического моделирования.

Заведуюший лабораторий механики активных материалов Южного научного центра РАН.

Научный сотрудник университета Отто фон Герике Магдебург  (Otto-von-Guericke-Universität Magdeburg (OvGU)).

Член Американского математического общества (AMS), Общества прикладной математики и механики (GAMM).
Член редколлегии журналов ZAMMВестник ЮНЦ РАН, World Journal of Mechanics, Вестник ПНИПУ. Механика.
Член диссертационных советов Д212.208.06, Д212.058.03.
Приглашенный редактор (guest-editor) ZAMM (2009, 2010, 2011, 2014), IJES (2014).

Тел.  +78632975282 (сл.), +49(0)345-5528436 (w).

E-mail: eremeyev@math.rsu.ru; eremeyev.victor@gmail.com; victor.eremeyev@iw.uni-halle.de; victor.eremeyev@ovgu.de

Researcher ID B-1478-2010; Scopus Author ID 12795763700Google scholar citations

Официальная страница на сайте университета здесь, на сайте кафедры здесь, можно смотреть также здесь и здесь, на сайте MLU hier, на сайте http://www.scientific.ru/ здесь.


Биография

Окончил механико-математический факультет (мехмат) Ростовского госуниверситета (РГУ) по специальности «механика» в 1985г.
С 1985 г. по 1988 г. — в очной аспирантуре при кафедре теории упругости мехмата РГУ.
В 1988 году поступил на работу ассистентом на кафедру информатики и вычислительного эксперимента РГУ. С 1988 г. по 1998 г. работал на кафедре информатики и вычислительного эксперимента РГУ.
С 1998 г. – на кафедре математического моделирования РГУ.
В 1990 г. защитил кандидатскую диссертацию на тему «Устойчивость двухфазных нелинейно-термоупругих тел» по специальности 01.02.04 – механика деформируемого твердого тела.
С 1996 г. — доцент.
В 2004 году защитил докторскую диссертацию по теме «Механика двухфазных тел с микроструктурой при конечных деформациях» в Институте проблем машиноведения РАН (Санкт-Петербург.)
С 2004 г. зав. лаб. в ЮНЦ РАН.
С 2010 г. по 2011 г. — научный сотрудник университета Мартина Лютера Халле-Виттенберг (Martin-Luther-Universität Halle-Wittenberg (MLU)).
С 2012 — научный сотрудник университета Отто фон Герике Магдебург  (Otto-von-Guericke-Universität Magdeburg (OvGU)). 
Трое детей.


Научные визиты


Gdansk, Poland, Institute of Fluid-Flow Machinery of the Polish Academy of Sciences (2003, 2005, 2008, 2009).
Halle, Germany, Martin-Luther University Halle-Wittenberg (2007, 2008, 2009, 2010).
Colombia, National University of Colombia, Bogota (2008, 2012).
Lublin, Poland, Politechnika Lubelska (2011, 2012).


Гранты

Принимал участие в выполнении грантов РФФИ, Конкурсного центра по фундаментальному естествознанию, по программе «Университеты России» Министерства образования, по программам ФНЦ «Интеграция», Минпромнауки, Фонда содействия отечественной науки, Фонда Сороса, CRDF, ISF, DFG, DAAD, Кассы Юзефа Мяновского, 7й Европейской рамочной программы (7th Framework Programme of European Union) и др.


Книги

  1. Еремеев В.А., Зубов Л.М. Механика упругих оболочек. М.: Наука, 2008, 280 с. (link, в библиотеках EqWorld, MechMath)
  2. Еремеев В.А., Зубов Л.М.  Основы механики вязкоупругой микрополярной жидкости. Ростов-на-Дону: Изд-во ЮНЦ РАН, 2009. 128 с. (link, в библиотеках EqWorld, MechMath)
  3. Lebedev L.P., Cloud M.J, Eremeyev V.A. Tensor Analysis with Applications in Mechanics. World Scientific, New Jersey et al. 2010. 363 p. (link)
  4. Altenbach H., Eremeyev V.A. (Eds). Shell-like Structures: Non-classical Theories and Applications. Advanced Structured Materials. Volume 15,  DOI: 10.1007/978-3-642-21855-2. Springer, Berlin et al.  2011, 761 p.
  5. Lebedev L.P., Cloud M.J, Eremeyev V.A. Advanced Engineering Analysis: Calculus of Variations and Functional Analysis with Applications in Mechanics. World Scientific, New Jersey et al. 2012. 499 p. (link)
  6. Eremeyev V.A., Lebedev L.P., Altenbach H. Foundations of Micropolar MechanicsSpringerBriefs in Applied Sciences and Technology. SpringerBriefs in Continuum Mechanics. Springer, Heidelberg et al. 2013, 125 p. (link)
  7. Altenbach H., Eremeyev V.A. (Eds). Generalized Continua: from the Theory to Engineering Applications. Series: CISM International Centre for Mechanical Sciences, Vol. 541. Springer, Wien et al. 2013. 402 p.
  8. Eremeyev V.A., Lebedev L.P., Rendon L. A. Elementos de mecanica matematica. Temas de matematicas aplicadas (in Spanish). Universidad  Nacional de Colombia, Bogota, 2013. 197 p. ISBN 978-958-761-388-9

Некоторые статьи в журналах (с 2004 г.)

  1. Eremeyev V.A., Pietraszkiewicz W. The nonlinear theory of elastic shells with phase transitions. J. Elasticity. 2004. 74. No. 1.  67–86.
  2. Eremeyev V. A. Acceleration waves in micropolar elastic media. Doklady Physics, 2005, 50. No. 4.  204–206.
  3. Eremeyev V.A., Sukhov D.A. Convective instabilities in thermoviscoelastic micropolar fluids. Matemáticas: Enseñanza Universitaria. 2005. XIII. No 1. 31–42.
  4. Eremeyev V.A. Pietraszkiewicz W. Local symmetry group in the general theory of elastic shells. J. Elasticity. 2006.  85. No 2. P. 125-152.
  5. Eremeyev V.A., Lebedev L.P. On the loss of stability of von Mises truss with the effect of pseudo-elasticity. Matemáticas: Enseñanza Universitaria. 2006. XIV. No 2 Diciembre. 111–118.
  6. Eremeyev V. A., Ivanova E. A.,  Morozov N. F., Soloviev A. N.  On the determination of eigenfrequencies for nanometer-size objects. Doklady Physics, 2006. 51. No. 2. 93–97.
  7. Eremeyev V. A., Ivanova E. A., Morozov N. F., Soloviev A. N.  Method of determining the eigenfrequencies of an ordered system of nanoobjects. Technical Physics. 2007. 52. No. 1.  1–6.
  8. Eremeyev V.A., Freidin A.B., Sharipova L.L. The stability of the equilibrium of two-phase elastic solids. Journal of Applied Mathematics and Mechanics (PMM). 2007. 71. No 1. 61–84.
  9. Eremeyev V.A., Zubov L.M. On constitutive inequalities in nonlinear theory of elastic shells. Z.Angew. Math. Mech. (ZAMM). 2007. 87. No. 2. 94–101.
  10. Pietraszkiewicz W., Eremeyev V.A., Konopinska V. Extended non-linear  relations of elastic shells undergoing phase transitions. Z.Angew. Math. Mech. (ZAMM). 2007. 87. No. 2. 150–159.
  11. Eremeyev V. A., Freidin A. B., Pavlyuchenko V. N., Ivanchev S. S. Instability of hollow polymeric microspheres upon swelling. Doklady Physics. 2007. 52. No. 1. 37–40.
  12. Eremeyev V. A., Ivanova E. A.,  Morozov N. F., Strochkov S. E. Natural vibrations of nanotubes. Doklady Physics. 2007. 52. No 8. 431–435
  13. Eremeyev V. A., Ivanova E. A.,  Morozov N. F., Strochkov S. E. The spectrum of natural oscillations of an array of micro- or nanospheres on an elastic substrate. Doklady Physics. 2007. 52, No. 12. 699–702.
  14. Eremeyev V.A., Lebedev L. P., Rendon L. A. On the propagation of acceleration waves in thermoelastic micropolar media. Revista Colombiana de Matematicas. 2007. 41. No 2. 397-406.
  15. Altenbach H., Eremeyev V.A. Direct approach based analysis of plates composed of functionally graded materials. Archive of Applied Mechanics. 2008. 78, No 10, 775-794.
  16. Altenbach H., Eremeyev V.A. Analysis of the viscoelastic behavior of plates made of functionally graded materials. Z.Angew. Math. Mech. (ZAMM). 2008. 88, No. 5. 332 – 341.
  17. Altenbach H., Brigadnov I.A., Eremeyev V.A. Oscillations of a magneto-sensitive elastic sphere. Z.Angew. Math. Mech. (ZAMM). 2008. 88, No. 6, 497 – 506.
  18. Eremeyev V. A., Ivanova E. A.,  Morozov N. F., Strochkov S. E. Natural vibrations in a system of nanotubes. Journal of Applied Mechanics and Technical Physics. 2008. 49, No. 2. 291–300.
  19. Altenbach H., Eremeyev V.A. On the time-dependent behavior of FGM plates. Key Engineering Materials 2009. 399. 63-70
  20. Altenbach H., Eremeyev V.A. On the bending of viscoelastic plates made of polymer foams. Acta Mechanica. 2008.  204. No 3-4. Pp. 137–154.
  21. Pietraszkiewicz, W., Eremeyev, V. A. On natural strain measures of the non-linear micropolar continuum. International Journal of Solids and Structures. 2009. 46. No. 3-4. 774–787.
  22. Pietraszkiewicz, W., Eremeyev, V. A. On vectorially parameterized natural strain measures of the non-linear Cosserat continuum. International Journal of Solids and Structures. 2009. 46. No 11-12.  2477-2480.
  23. Eremeyev, V. A., Pietraszkiewicz, W. Phase transitions in thermoelastic and thermoviscoelastic shells. Archive of Mechanics. 2009. 61, No 1, 41-67.
  24. Eremeyev V. A., Altenbach H., Morozov N. F. The Influence of Surface Tension on the Effective Stiffness of Nanosized Plates. Doklady Physics, 2009, 54, No. 2, 98–100.(Translation. Еремеев В.А., Альтенбах Х., Морозов Н.Ф. О влиянии поверхностного натяжения на эффективную жесткость наноразмерных пластин //Доклады РАН. 2009. Т. 424. No. 5. С. 618–620.)
  25. Altenbach H., Eremeyev V.A. On the linear theory of micropolar plates. Z. Angew. Math. Mech. (ZAMM). 2009. 89. No. 4. 242 – 256.
  26. Altenbach H., Eremeyev V.A. Eigen-vibrations of plates made of functionally graded material. CMC: Computers, Materials, & Continua. 2009. 9. No 2. 153-178.
  27. Altenbach H.  Eremeyev V.A.,  Indeitsev D.A.,  Ivanova E.A.,  Krivtsov A.M. On the Contributions of Pavel Andreevich Zhilin to Mechanic. Technische Mechanik, 2009.  29, N 2. 115 – 134.
  28. Altenbach H., Eremeyev V. A., Morozov N. F. Linear theory of shells taking into account surface stresses. Doklady Physics, 2009, 54, No. 12. 531–535. (Translation. Альтенбах Х., Еремеев В.А., Морозов Н.Ф. Линейная теория оболочек при учете поверхностных напряжений //Доклады РАН. 2009. Т. 429. No. 4. С. 472–476.)
  29. Альтенбах Х., Еремеев В.А. Об уравнениях оболочек типа Коссера. Вычислительная механика сплошных сред. 2009. Т. 2, № 4. С. 11–18.
  30. Altenbach J., Altenbach H., Eremeyev V.A. On generalized Cosserat-type theories of plates and shells: a short review and bibliography. Arch. Appl. Mech. 2010. 80. N 1. Pp. 73-92. DOI 10.1007/s00419-009-0365-3.
  31. Altenbach H., Eremeyev V.A., Lebedev L. P., Rendon L. A. Acceleration waves and ellipticity in thermoelastic micropolar media. Arch. Appl. Mech. 2010. 80. No 3. Pp. 217-227.  DOI 10.1007/s00419-009-0314-1.
  32. Altenbach H., Eremeyev V.A., Lebedev L. P. On the existence of solution in the linear elasticity with surface stresses. Z.Angew. Math. Mech. (ZAMM). 2010. 90. No. 3. Pp. 231–240. DOI 10.1002/zamm.200900311.
  33. Eremeyev V. A.,  Morozov N. F. The effective stiffness of a nanoporous rod. Doklady Physics, 2010, 55, No. 6. 279–282. (Translation of Еремеев В.А., Морозов Н.Ф. Об эффективной жесткости нанопористого стержня //Доклады РАН. 2010. Т. 432. No. 4. С. 473–476.)
  34. Eremeyev V. A., Ivanova E.A.,  Indeitsev D.A. Wave processes in nanostructures formed by nanotube arrays or nanosize crystals. Journal of Applied Mechanics and Technical Physics, 2010,  51, No. 4, 569–578  (Translation from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 51, No. 4, pp. 143–154, July–August, 2010).
  35. Гирченко А.А., Еремеев В.А., Морозов Н.Ф.  Моделирование спиральных нанопленок с пьезоэлектрическими свойствами // Физ. мезомех. — 2010. — Т. 13. — № 2. — С. 5-10 (A.A. Girchenko, V.A. Eremeev and N.F. Morozov, Modeling of spiral nanofilms with piezoelectric properties, Physical Mesomechanics, 2011, 14, No. 1-2, 10-15).
  36. Altenbach H., Eremeyev V. A., Morozov N. F.  On equations of the linear theory of shells with surface stresses taken into account. Mechanics of Solids, 2010, Vol. 45, No. 3, pp. 331–342. (translated from H. Altenbach, V.A. Eremeev, and N.F. Morozov,  Izvestiya Akademii Nauk. Mekhanika Tverdogo Tela, 2010, No. 3, pp. 30–44).
  37. Altenbach H., Eremeyev V.A. On the effective stiffness of plates made of hyperelastic materials with initial stresses. International Journal of Non-Linear Mechanics. 2010. 45. No 10. 976-981. DOI: 10.1016/j.ijnonlinmec.2010.04.007
  38. Altenbach H., Eremeyev V.A., Kutschke A., Naumenko K. Conservation laws and prediction methods for stress concentration fields. Acta Mechanica. 2011. 218. No 3-4.  349-355. DOI 10.1007/s00707-010-0425-3
  39. Eremeyev V.A., Lebedev L.P. Existence theorems in the linear theory of micropolar shells. Z.Angew. Math. Mech. (ZAMM). 2011, 91, No. 6, 468-476. DOI: 10.1002/zamm.201000204
  40. Altenbach H., Eremeyev V.A., Lebedev L.P. On the spectrum and stiffness of an elastic body with surface stresses. Z.Angew. Math. Mech. (ZAMM). 2011, 91, No 9. 699-710. DOI: 10.1002/zamm.201000214
  41. Lebedev L.P., Eremeyev V.A. Academician Iosif I. Vorovich. Z.Angew. Math. Mech. (ZAMM). 2011, 91, No. 6, 429-432.  DOI: 10.1002/zamm.201000200
  42. Altenbach H., Eremeyev V.A. On the shell theory on the nanoscale with surface stresses. International Journal of Engineering Science. 2011. 49. No 12. 1294-1301. doi:10.1016/j.ijengsci.2011.03.011
  43. Eremeyev, V. A., Pietraszkiewicz, W. Thermomechanics of shells undergoing phase transition. Journal of the Mechanics and Physics of Solids. 2011. 59, No 7.  1395-1412. doi:10.1016/j.jmps.2011.04.005
  44. Bîrsan, M., Altenbach, H.,  Sadowski,  T., Eremeyev, V.A., Pietras, D. Deformation analysis of functionally graded beams by the direct approach. Composites Part B: Engineering. 2012. 43, No 3. 1315-1328. doi:10.1016/j.compositesb.2011.09.003
  45. Altenbach, H., Bîrsan, M., Eremeyev, V.A. On a thermodynamic theory of rods with two temperature fields. Acta Mechanica. 2012. 223. No 8. 1583-1596. doi: 10.1007/s00707-012-0632-1
  46. Altenbach, H., Eremeyev, V.A., Morozov, N.F. Surface viscoelasticity and effective properties of thin-walled structures at the nanoscale. International Journal of Engineering Science. 2012. 59. 83-89  http://dx.doi.org/10.1016/j.ijengsci.2012.03.004
  47. Eremeyev, V. A., Pietraszkiewicz, W. Material symmetry group of the non-linear polar-elastic continuum. International Journal of Solids and Structures. 2012. 49, No 14. 1993-2005  http://dx.doi.org/10.1016/j.ijsolstr.2012.04.007
  48. Girchenko, A.A., Eremeyev, V.A., and Altenbach H. Interaction of a helical shell with a nonlinear viscous fluid. International Journal of Engineering Science. 2012. 61. 53-58.  http://dx.doi.org/10.1016/j.ijengsci.2012.06.009
  49. Altenbach, H., Eremeyev, V.A., Ivanova, E.A., Morozov, N.F.  Bending of three-layer plate with near-zero transverse shear stiffness (in Russian). Physical Mesomechanics. 2012. 15. No 6. 15-19.
  50. Altenbach, H., Eremeyev, V.A. Large Deformations of Inelastic Shells. Key Engineering Materials. 2013.   535-536. 76-79.  doi:10.4028/www.scientific.net/KEM.535-536.76
  51. Eremeyev, V.A., Lebedev, L.P. Existence of weak solutions in elasticityMathematics and Mechanics of Solids. 2013. 18. No. 2. 204-217. doi: 10.1177/1081286512462187
  52. Rosi, G., Giorgio, I,  Eremeyev, V.A. Propagation of linear compression waves through plane interfacial layers and mass adsorption in second gradient fluidsZ. Angew. Math. Mech. (ZAMM). 2013. 93. No 12, 914-927; DOI 10.1002/zamm.201200285
  53. Еремеев В.А., Иванова Е.А., Морозов Н.Ф. Некоторые задачи наномеханики. Физ. мезомех.  2013.  Т. 16.  № 4.  С.  67-73. (Eremeyev, V.A., Ivanova, E.A., Morozov, N. F. Some problems of nanomechanicsPhysical Mesomechanics. 2014. 17(1). 23-29)
  54. Альтенбах Х., Еремеев В.А., Наседкин А.В. Нестационарные задачи для пьезоэлектрических тел с поверхностными пленками. Теоретическая и прикладная механика. 2013. Донецк: Донецкий нац. ун-т. Вып. 6 (52). С. 115-124. (Altenbach H., Eremeyev V. A., Nasedkin A. V. Transient problems for piezoelectric bodies with surface films // Theoretical and Applied Mechanics. 2013. No. 6(52). Donetsk: Donetsk National University, 2013. P. 115-124). ISSN 0136-4545.
  55. Eremeyev, V. A., Pietraszkiewicz, W. Editorial: Refined theories of plates and shellsZ. Angew. Math. Mech. (ZAMM). 2014. 94(1-2). 5-6.   DOI: 10.1002/zamm.201300148
  56. Naumenko, K., Eremeyev, V.A. A layer-wise theory for laminated glass and photovoltaic panelsComposite Structures, 2014. 112, 283-291. http://dx.doi.org/10.1016/j.compstruct.2014.02.009
  57. Eremeyev, V.A., Lebedev, L.P., Ogden, R.W. Leonid M. Zubov: A life devoted to nonlinear mechanics.  International Journal of Engineering Science,  2014. 80, 1-3. http://dx.doi.org/10.1016/j.ijengsci.2014.03.005
  58. Altenbach, H., Eremeyev, V.A. Vibration analysis of non-linear 6-parameter prestressed shells. Meccanica, 2014. 49(8), 1751-1761.  doi: 10.1007/s11012-013-9845-1
  59. Auffray N., dell’Isola F.,  Eremeyev V., Madeo A., Rosi G. Analytical continuum mechanics à la Hamilton-Piola: least action principle for second gradient continua and capillary fluidsMathematics and Mechanics of Solids. 2013. doi:10.1177/1081286513497616 (http://arxiv.org/abs/1305.6744) 44 pp.
  60. Nasedkin, A.V., Eremeyev, V.A. Harmonic vibrations of nanosized piezoelectric bodies with surface effectsZ. Angew. Math. Mech. (ZAMM). 2013. 1-15. DOI: 10.1002/zamm.201300085
  61. Eremeyev, V.A., Altenbach, H. Equilibrium of a second-gradient fluid and an elastic solid with surface stresses. Meccanica, 2013. doi: 10.1007/s11012-013-9851-3
  62. Eremeyev, V.A., Ivanova, E.A., Morozov, N.F. On free oscillations of an elastic solids with ordered arrays of nano-sized objects. Continuum Mechanics and Thermodynamics, 2014. DOI 10.1007/s00161-014-0343-z
  63. Altenbach, H., Eremeyev, V.A. Strain rate tensors and constitutive equations of inelastic micropolar materials. International Journal of Plasticity, 2014. doi: 10.1016/j.ijplas.2014.05.009

Некоторые статьи в трудах конференций и коллективных монографиях (с 2005 г.)

  1. Eremeyev V.A. Nonlinear micropolar shells: theory and applications. Shell Structures: Theory and Applications. W. Pietraszkiewicz and C. Szymczak (eds.). London et al., Taylor & Francis, 2005. 11–18.
  2. Altenbach H., Eremeyev V.A. On the applications of Zhilin’s theory of simple shells to plates made of functionally graded materials. Proc. XXXVI Summer school-conf. “Advanced Problems in Mechanics”  (APM 2008). July, 6-11, Saint-Petersburg. 2008. 8-49.
  3. Altenbach H., Eremeyev V.A. Effective properties of plates made of functionally graded materials. Proc. EUROMECH Colloquium 498. Nonlinear Dynamics and Smart Structures. Eds. J.Warminski, M.P.Cartmell, J.Latalski. Lublin, 2008.  67-70.
  4. Eremeyev V.A., Altenbach H. On the eigenfrequencies of an ordered system of nanoobjects. Proc. IUTAM Symposium on Nanomodelling Materials and Nanosystems. 19-22.05.2008. Aalborg, Denmark. IUTAM Bookseries, Vol. 13.  Springer, 2009.  R. Pyrz, J.C. Rauhe, Eds, 123-132.
  5. Eremeyev V.A., Altenbach H. Configurational forces in the theory of two-phase plates. Proc. IUTAM Symposium on Progress in the Theory and Numerics of Configurational Mechanics. 20-24.10.2008. Erlangen-Nurnberg, Germany. IUTAM Bookseries, Vol. 17.  Springer, 2009.  P. Steinmann, Ed., 121-130.
  6. Eremeyev V.A., Pietraszkiewicz W. On tension of a two-phase elastic tube. Shell Structures. Theory and Applications. Vol. 2. W. Pietraszkiewicz, I. Kreja, Eds. Boca Raton, CRC Press, 2010.  63-66.
  7. Altenbach H., Eremeyev V.A.  On the  shell and plate theories with surface stresses. Shell Structures. Theory and Applications. Vol. 2. W. Pietraszkiewicz, I. Kreja, Eds. Boca Raton, CRC Press, 2010.  47-50.
  8. Zubov L. M., Eremeyev V.A. Nonlinear Saint-Venant problem of torsion and tension of the cylindrical shell. Shell Structures. Theory and Applications. Vol. 2. W. Pietraszkiewicz, I. Kreja, Eds. Boca Raton, CRC Press, 2010. 103-106.
  9. Altenbach H., Eremeyev V.A. On the theories of plates based on the Cosserat approach. Advances in Mechanics and Mathematics. Vol. 21. Mechanics of Generalized Mechanics of Generalized Continua, First One Hundred Years After the Cosserats. Gérard A. Maugin and Andrei V. Metrikine (eds).  New York: Springer, 2010. 27-35.
  10. Pietraszkiewicz W., Eremeyev V.A. Natural Lagrangian strain measures of the non-linear Cosserat continuum. Advances in Mechanics and Mathematics. Vol. 21. Mechanics of Generalized Mechanics of Generalized Continua, First One Hundred Years After the Cosserats. Gérard A. Maugin and Andrei V. Metrikine (eds).  New York: Springer, 2010. 79-86.
  11. Altenbach H., Eremeyev V.A. Thin-walled structures made of foams. Cellular and Porous Materials: Modeling — Testing —  Application. CISM Courses and Lecture Notes. Vol. 521. H.Altenbach and A.Oechsner (eds), Springer-Verlag, Wien, 2010. 167-242.
  12. Altenbach H., Eremeyev V.A. Mechanics of Viscoelastic Plates Made of FGMs. Computational Modelling and Advanced Simulations.
    Computational Methods in Applied Sciences
    , Justín Murín, Vladimír Kompiš, and Vladimír Kutiš (Eds).  Springer Science+Business Media, Dordrecht, 2011, Volume 24, 33-48, DOI: 10.1007/978-94-007-0317-9_2.
  13. Altenbach H., Eremeyev V.A., Lebedev L.P. Micropolar Shells as Two-dimensional Generalized Continua Models. In: Advanced Structured Materials, Vol. 7,  H. Altenbach et al. (eds.), Mechanics of Generalized Continua, Springer, Berlin, Heidelberg, 2011, pp. 23-55. DOI: 10.1007/978-3-642-19219-7_2.
  14. Eremeyev V.A., Pietraszkiewicz W. On the nonlinear theory of two-phase shells.   In: Shell-like Structures: Non-classical Theories and Applications. Advanced Structured Materials, Vol. 15,  H. Altenbach, V.A. Eremeyev (eds.), Springer, Berlin, Heidelberg, 2011, pp. 219-232. DOI: 10.1007/978-3-642-21855-2_16.
  15. Meenen J., Altenbach H., Eremeyev V., Naumenko K. A variationally consistent derivation of microcontinuum theories. In: Shell-like Structures: Non-classical Theories and Applications. Advanced Structured Materials, Vol. 15,  H. Altenbach, V.A. Eremeyev (eds.), Springer, Berlin, Heidelberg, 2011, pp. 571-584. DOI: 10.1007/978-3-642-21855-2_38.
  16. Altenbach, H.; Eremeyev, V.A. On the inelastic constitutive equations of plates and shells  made of foams. In: Engineering Plasticity and Its Applications, J. Li, Z. Li, X.-T. Feng, W.B. Lee & H. Zhou (eds).  World Scientific, Singapore, 2011. pp. 86-90.
  17. Altenbach, H.; Eremeyev, V.A. Morozov, N.F. Mechanical properties of materials considering surface effects. In: IUTAM Symposium on Surface Effects in the Mechanics of Nanomaterials and Heterostructures. IUTAM Bookseries (closed), Springer, 2013, Volume 31, pp. 105-115, doi: 10.1007/978-94-007-4911-5_9.
  18. Altenbach H., Eremeyev V.A. Surface Viscoelasticity and Effective Properties of Materials and Structures. In: Advanced Materials Modelling for StructuresAdvanced Structured Materials, Vol. 19, Altenbach, H. and Kruch, S. (Eds.), Springer, Berlin, Heidelberg, 2013, pp. 9-16.
  19. Altenbach H., Eremeyev V.A., Lebedev L.P.  Mathematical Study of Boundary-Value Problems of Linear Elasticity with Surface Stresses. In: Surface Effects in Solid MechanicsAdvanced Structured Materials, Vol. 30, Altenbach, H. and Morozov, N.F. (Eds.), Springer, Berlin, Heidelberg, 2013, pp. 1-19.
  20. Altenbach H., Eremeyev V.A., Morozov N.F.  On the Influence of Residual Surface Stresses on the Properties of Structures at the Nanoscale. In: Surface Effects in Solid MechanicsAdvanced Structured Materials, Vol. 30, Altenbach, H. and Morozov, N.F. (Eds.), Springer, Berlin, Heidelberg, 2013, pp. 21-32.
  21. Nasedkin A.V., Eremeyev V.A. Spectral Properties of Piezoelectric Bodies with Surface Effects. In: Surface Effects in Solid MechanicsAdvanced Structured Materials, Vol. 30, Altenbach, H. and Morozov, N.F. (Eds.), Springer, Berlin, Heidelberg, 2013, pp. 105-121.
  22. Altenbach H., Eremeyev V.A.   On the Continuum Mechanics Approach in Modeling Nanosized Structural Elements. In: New Frontiers of Nanoparticles and Nanocomposite MaterialsAdvanced Structured Materials, Vol. 4, Öchsner, A. and Shokuhfar, A. (Eds.), Springer, Berlin, Heidelberg, 2013, pp. 351-371.
  23. Altenbbach H., Eremeyev V.A. Shells and Plates with Surface Effects. In: Generalized Continua as Models for Materials with Multi-scale Effects or Under Multi-field ActionsAdvanced Structured Materials, Vol. 22, Altenbach, H.,  Forest, S., and Krivtsov, A.  (Eds.), Springer, Berlin, Heidelberg, 2013, pp. 1-15.
  24. Eremeyev V.A., Pietraszkiewicz W. Material Symmetry Group and Consistently Reduced Constitutive Equations of the Elastic Cosserat Continuum. In: Generalized Continua as Models for Materials with Multi-scale Effects or Under Multi-field ActionsAdvanced Structured Materials, Vol. 22, Altenbach, H.,  Forest, S., and Krivtsov, A.  (Eds.), Springer, Berlin, Heidelberg, 2013, pp. 77-90.
  25. Altenbach, H., Eremeyev, V.A.  Actual Developments in the Nonlinear Shell Theory — State of the Art and New Applications of the Six-Parameter Shell Theory. In: W. Pietraszkiewicz, J.Gorski (eds.) Shell Structures: Theory   and Applications, vol. 3. Taylor & Francis, London, 2014, pp. 3-12.
  26. Eremeyev, V.A., Altenbach, H.: Rayleigh variational principle and vibrations of   prestressed shells. In: W. Pietraszkiewicz, J.Gorski (eds.) Shell Structures: Theory and Applications, vol. 3. Taylor & Francis, London, 2014, pp. 285-288.
  27. Eremeyev, V.A., Ivanova, E. A., Altenbach, H., Morozov N. F. On effective stiffness of a three-layered plate with a core filled by a capillary fluid. In: W. Pietraszkiewicz, J.Gorski (eds.) Shell Structures: Theory and Applications, vol. 3. Taylor & Francis, London, 2014, pp. 85-88.
  28. Altenbach, H., Eremeyev, V.A. Basic equations of continuum mechanics. In: H. Altenbach and A. Öchsner (eds.), Plasticity of Pressure-Sensitive Materials, Engineering Materials, DOI: 10.1007/978-3-642-40945-5_1, Springer-Verlag, Berlin, Heidelberg, 2014, pp. 1-47.
  29. Eremeyev, V.A., Pietraszkiewicz, W. Phase Transitions in Thermoviscoelastic Shells. In: Encyclopedia of Thermal Stresses. Hetnarski, R. B. (Ed.) Springer,  2014, LXXXIII, 6643 p. In 11 volumes. ISBN 978-94-007-2738-0. Pp. 3667-3673.
  30. Eremeyev, V.A. Acceleration Waves in Nonlinear Thermoelastic Micropolar Media. In: Encyclopedia of Thermal Stresses. Hetnarski, R. B. (Ed.) Springer,  2014, LXXXIII, 6643 p. In 11 volumes. ISBN 978-94-007-2738-0,        pp. 21-27.
  31. Eremeyev, V.A. Ellipticity Condition and Acceleration Waves in Nonlinear Thermoelastic Solids. In: Encyclopedia of Thermal Stresses. Hetnarski, R. B. (Ed.) Springer,  2014, LXXXIII, 6643 p. In 11 volumes. ISBN 978-94-007-2738-0, pp. 1243-1247.